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Abstract Peptide Arg–Gly–Asp (RGD) sequence is a

ubiquitous adhesive motif found in various bone extracel-

lular matrix proteins and is crucial in the biomaterial surface/

interface reaction. This study analyzed the adsorption of

RGD on different titanium oxide surfaces with molecular

dynamics simulation. The simulation results indicate that the

RGD peptide binds strongly with anatase (001) and rutile

(010). RGD conformation changes due to the variation of the

backbone torsion angle in the middle of the RGD chain. Pair

correlation function analysis indicates that the interaction of

the RGD peptide and the titanium oxide results from

hydrogen bonding and the groups in RGD play different roles

during the adsorption process. This study provides useful

information on how to design titanium surfaces in order to

modulate peptide or protein adsorption.

1 Introduction

Titanium and its alloys have been widely used as materials

for medical implants in human body since late 1970s [1].

The thin layer of native titanium oxide on titanium surface,

formed by reacting with biological fluids, was believed to

be closely related to titanium excellent biocompatibility

and osteointegration [2]. There are three types of TiO2, i.e.,

rutile, anatase, and brookite. The crystal surfaces of rutile

(110), (100), (001), (010) and anatase (101), (100), (001),

(010) are of most interest in the surface science of TiO2 [3].

Peptide-based biomaterials are usually adsorbed on

TiO2 surfaces to give rise to self-organized two- and three-

dimensional structures, which support three-dimensional

tissue growth. Therefore, various peptides and proteins

have been grafted on TiO2 surfaces by different methods to

enhance bone growth on implant surfaces [4]. Peptide Arg–

Gly–Asp (RGD) sequence is a ubiquitous adhesive motif

that is found in various bone extracellular matrix proteins

such as collagen, fibronectin, osteonectin, and vitronectin

[5]. Since RGD peptide has profound effects on the

osteoblast adhesion, it has been suggested to graft RGD on

titanium surfaces in order to increase the osteoblast adhe-

sion to and subsequent proliferation on orthopedic implants

[6, 7].

Understanding the adsorption and interaction of RGD

preptide on TiO2 surfaces is crucial for successfully

grafting RGD on the surfaces of titanium implants. Few

theoretical studies have been reported in this aspect

although the interaction between the RGD peptide and

TiO2 has been investigated by experiments both in vitro

and in vivo [8–10]. Molecular dynamics (MD) simulation

is able to reveal the microscopic interactions at the atom-

istic scale and can help in comprehensive understanding

and interpreting the experiment results [11]. In this study,

MD simulations were performed to investigate the inter-

facial behavior between the RGD peptide and various TiO2

surfaces. The binding energies, torsion angles, and pair

correlation functions (PCF) during the process of RGD
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adsorption on TiO2 surfaces were analyzed in order to

understand the interaction mechanism.

2 Methods and model

The MD simulations were conducted with the Materials Stu-

dio v 4.1 packages (Accelrys, San Diego, CA) using the force

field of the condensed-phase optimized molecular potentials

for atomistic simulation studies (COMPASS), which is a

‘‘Class II’’ ab initio-based force field and is applicable to both

organic and inorganic materials [12–14]. Using COMPASS

resulted in a compromise between the accuracy and avail-

ability of force field parameters for all atom types presenting

in the current simulation model [15]. Canonical (NVT)

ensemble was used in the MD simulations where the Nosé

algorithm method was used for the temperature control.

2.1 RGD peptide

The peptide chain was constructed by adding the amino

acid residues with the sequence of Arg–Gly–Asp (Fig. 1).

Figure 1a schematically showed the torsion angles that

were monitored through MD simulation. Figure 1a also

indicates the interesting atoms in the pair correction

function (PCF) analysis. To obtain the RGD conformation

that exhibits minimized energy, the chain was annealed by

MD simulations for 100 ps at each temperature with the

temperature increasing from 298 K in steps of 10 K to

338 K and decreasing back.

2.2 TiO2 surfaces

TiO2 surfaces were constructed by cleaving the crystal

along certain crystallographic planes, namely, (110), (100),

(001), and (010) for rutile, while (101), (100), (001), and

(010) for anatase. The dimensions of the rutile surfaces in

the simulation were as follows: (001) 44 Å 9 37 Å 9

11 Å; (010) 38 Å 9 36 Å 9 11 Å; (100) 46 Å 9 46 Å

9 11 Å; (110) 35 Å 9 39 Å 9 11 Å. The dimensions of

the anatase surfaces in the simulation were as follows:

(001) 38 Å 9 38 Å 9 11 Å; (010) 38 Å 9 38 Å 9 11 Å;

(100) 38 Å 9 38 Å 9 11 Å; (110) 41 Å 9 38 Å 9 11 Å.

The first two layers of each surface was annealed in the

temperature range of 300–500 K with the step size of 20 K

at each temperature for 100 ps by MD simulations. The

annealing generated atomistic disorders on TiO2 surfaces,

similar to the real surfaces.

2.3 RGD–TiO2 system

RGD peptide with the minimum energy conformation was

placed close to each TiO2 surface with random orientation.

A vacuum slab with the thickness of 30 Å was added above

the TiO2 surfaces so that a RGD chain only interacted with

one side of the surfaces (Fig. 2). Finally, the conformation

of the RGD–TiO2 system was analyzed by minimizing the

total energy through MD simulations and the MD trajec-

tory was stored for subsequent analysis.

3 Results and discussion

3.1 Binding energy

The binding energy between the RGD peptide and the TiO2

surface can be calculated using the following formula:

Ebinding ¼ ðETiO2
þ ERGDÞ � Etotal

in which Etotal is the total energy of the RGD–TiO2 system;

ETiO2
is the energy of the TiO2 surface without the RGD, and
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Fig. 1 (a) Schematic drawing of RGD peptide structure, including

the index of the interested torsion angles and atom groups; (b) Ball-

and-Stick model of RGD and the color codes: carbon, gray; hydrogen,

white; nitrogen, blue; and oxygen, red
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ERGD is the energy of the RGD without the TiO2 surface [16,

17]. Table 1 lists all the binding energies per unit surface

area obtained from MD simulations. For anatase, RGD

adsorption on the (001) surface has the highest binding

energy, indicating the strongest interaction. The binding

energies of RGD peptide on (010) and (100) surfaces are at

the same level and both are much lower than those of (001)

and (101). For rutile, the RGD peptide shows the highest

binding energy on the (010) surface than on other three

surfaces. Figure 3 shows snapshots of the RGD peptide

configurations on the various surfaces. The simulations

indicate that the RGD peptide manifests a similar confor-

mation on both anatase (001) and rutile (010). This

simulation results imply that this RGD peptide conformation

is related to a tight binding form of RGD on titanium

surfaces.

3.2 Torsion angle

Analysis of torsion angle variations of molecules help us to

understand the conformational changes of RGD peptide

during the adsorption process [18]. The torsion angle

variations during RGD adsorption on the surfaces were

monitored; particularly, for the adsorption with the highest

binding energy, rutile (010) and anatase (001). The x1 and

x2 torsion angles locating on the amide plane keep con-

stant during the whole MD process. This result indicates

that the simulation is reasonable because the x1 and x2

should be ±180� according to the general theory of bio-

chemistry. Figure 4 shows that the RGD peptide backbone

torsion angles (/1 and w2) change drastically at the

beginning of the adsorption process, approximately within

3 ps, when RGD interacts with anatase (001). The torsion

angle /1 keeps a nearly constant value of -100� after an

acute change at approximately 2 ps while w1 keeps the

constant of 100�. However, the torsion angle w2 fluctuates

in the range of -180� to 0� and finally falls in the range of

-150� to -100�, while /2 maintains at -100� after the

initial vibration stage. The torsion angles of RGD peptide

adsorbing on the rutile (010) shows the similar change

patterns (Fig. 5). In summary, torsion angle analysis indi-

cates that the conformation change during RGD adsorption

on titanium oxide surface is mainly caused by the changes

of w2, the back bone torsion angle in the middle of the

RGD chain.

Fig. 2 RGD–TiO2 interaction model used for MD simulation

Table 1 The binding energy between the RGD peptide and the TiO2 surfaces of two crystal forms

TiO2

Surfaces

Surface

area (Å2)

Etotal

(kcal/mol)

ETiO2

(kcal/mol)

ERGD

(kcal/mol)

Ebinding

(kcal/mol)

Ebinding�unit area

(kcal/mol Å2)

A (001) 1426 -750362 -750362 -48 1596 1.13

A (010) 1433 -769043 -768689 -280 74 0.05

A (100) 1433 -769165 -768810 -300 55 0.04

A (101) 1542 -789361 -788029 -47 1285 0.83

R (001) 1631 -1611316 -1609921 -21 1374 0.84

R (010) 1414 -839803 -838079 -35 1689 1.19

R (100) 2110 -1149326 -1148994 -281 51 0.02

R (110) 1384 -924958 -923758 -81 1119 0.81

A, anatase; R, rutile

Fig. 3 The snapshot of the RGD peptide configuration: RGD peptide

on the anatase (001) surface before (a) and after (b) MD simulation;

RGD peptide on the rutile surface (010) before (c) and after (d) MD

simulation
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3.3 Pair correlation function

The PCF analysis indicates that the behavior of RGD

adsorption on different surfaces is quite similar, and the

interaction between the RGD peptide and the titanium

oxide surface mainly results from hydrogen bonding. As

indicated in Fig. 6, the main contribution of the interaction

comes from the strong interaction between the Ti atoms of

the very top titanium oxide surface and the O atoms

locating at the end or at the branch of the Asp residues

because the first strong peak is at the round of 2.5 Å, which

is a typical hydrogen bonding [19, 20]. The PCF analysis

also indicates that different groups in RGD play different

roles during the RGD adsorption process. Figure 6 shows

that the peak of Ti–O(Asp end) in RGD–rutile is larger

than that in RGD–anatase while the peak of Ti–Asp branch

in RGD–rutile is lower than that in RGD–anatase.

However, there is not much PCF difference in the inter-

actions of Ti–Arg branch and Ti–O (on the amide plane).

Their interaction distances are in the range of 3–4 Å for

RGD–anatase and RGD–rutile.

4 Conclusions

MD simulations of adsorptions of RGD peptide on titanium

oxide surfaces indicate that the RGD peptide has high

binding energy on anatase (001) and rutile (010). RGD

conformation change is mainly caused by the change of the

back bone torsion angle in the middle of the RGD chain.

PCF analysis indicates that the RGD peptide and the tita-

nium oxide generate hydrogen bonding and different

groups in RGD play various roles during the adsorption

process.
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Fig. 4 The torsion angle (w1, /1, w2 and /2) evolution with time of

RGD peptide on the anatase (001) during the MD simulation process

Fig. 5 The torsion angle (w1, /1, w2 and /2) evolution with time of

RGD peptide on the rutile (010) during the MD simulation process

Fig. 6 The pair correlation functions: (a) RGD–anatase (001); and

(b) RGD–rutile (010)
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